UNG UNIVERSITY of $\quad \begin{aligned} & \text { UNGRTH GEORGIA* } \\ & \text { NORTH }\end{aligned}$

University of North Georgia
 Mathematics Tournament

April 6, 2019

Solutions for the Afternoon Team Competition

Round 1

The area of the black region is found by taking the area of the square and subtracting the area of the semi-circles. The area of the black region is $(2 r)^{2}-2 \cdot \frac{\pi r^{2}}{2}=4 r^{2}-\pi r^{2}=9-2.25 \pi$. Solving we get that $r^{2}=\frac{9}{4}$ and $r=\frac{3}{2}$. Therefore the perimeter of the square is $2 r \cdot 4=2 \cdot \frac{3}{2} \cdot 4=12$.

Round 2

The area of each grid is $(100 f t)^{2}$.
$\frac{1}{2}(400 f t) h+(200 f t)(100 f t)=0.5(13)(100 f t)^{2}$
$(200 \mathrm{ft}) h+2(100 \mathrm{ft})^{2}=6.5(100 \mathrm{ft})^{2}$
$(200 \mathrm{ft}) h=4.5(100 \mathrm{ft})^{2}=\frac{9}{2}(100 \mathrm{ft})^{2}$
$h=\frac{9}{4}(100 \mathrm{ft})=225 \mathrm{ft}$
$L=\sqrt{(400 \mathrm{ft})^{2}+(225 \mathrm{ft})^{2}}=\sqrt{210625 \mathrm{ft}^{2}}=458.9 \mathrm{ft}$

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 3

The median is the average of the two middle numbers. The $1010^{\text {th }}$ and $1011^{\text {th }}$ numbers of the set of even integer numbers are middle numbers and their average is 2020. If x is the $1010^{\text {th }}$ number, then $x+2$ is the $1011^{\text {th }}$ number. We have $\frac{x+(x+2)}{2}=2021$, thus the $1010^{\text {th }}$ number is 2020 and the $1011^{\text {th }}$ number 2022. Beside the $1010^{\text {th }}$ and $1011^{\text {th }}$ numbers, there are 2018 other numbers in the list. There are 1010 numbers on each side of the median. The smallest term in the list can be found by subtracting 2 from the $1010^{\text {th }}$ number 1099 times. Thus the smallest even number in the list is given by $2020-1009 \cdot 2=2$. Similarly, the greatest number is found by adding 2 to the $1011^{\text {th }}$ number 1009 times. Thus the largest even number in the list is given by $2022+1009 \cdot 2=4040$. Let $S=2+4+6+\cdots+4038+4040$. Then $2 S=(2+4040)+(4+4038)+\cdots+(4038+4)+(4040+2)$. This gives $2 S=4042 \cdot 2020=8,164,840$ and $S=4,082,420$.

Round 4

Using laws of logarithms we have $\log _{10}\left(x^{2}-16\right) \leq 2$, and then $x^{2}-16 \leq 100$ and $x^{2} \leq 116$. The integer solutions would be $x=-10,-9,-8, \ldots, 8,9,10$, but $\log _{10}(x+4)+\log _{10}(x-4)$ is only defined for $x>4$, so the sum of the integer solutions is $5+6+7+8+9+10=45$.

Round 5

5 consecutive years has $5(365)+2=1827$ maximum days. There are $0,1,2$, or 3 possibilities for ingredients. Let n be the number of topping ingredients that must be available. The number of different pizzas will either have $0,1,2$, or 3 ingredients. That is
(\# of pizzas with 0 ingredients $)+$ (\# of pizzas with 1 ingredient $)+$ (\# of pizzas with 2 ingredients $)$
$+(\#$ of pizzas with 3 ingredients $)=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3} \geq 1827$. This gives
$1+n+\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)}{6} \geq 1827$. Simplifying gives $f(n)=n^{3}+5 n \geq 10956$ and $f(22)<10956<f(23)$, hence the least n is 23 .

Round 6

The number of families that have only motorcycle is $200-150=50$. In the 150 families that own car, half of them own both car and motorcycle, so the number of families that have both car and motorcycle is $\frac{1}{2}(150)=75$. The number of families that have motorcycle are $50+75=125$.

Round 7

Note $\sqrt{7+4 \sqrt{3}}=\sqrt{(2+\sqrt{3})^{2}}=2+\sqrt{3}$ and $\sqrt{7-4 \sqrt{3}}=\sqrt{(2-\sqrt{3})^{2}}=2-\sqrt{3}$. The equation can be rewritten as $(2+\sqrt{3})^{\cos x}+(2-\sqrt{3})^{\cos x}=4$.

Moreover, since $2-\sqrt{3}=\frac{1}{2+\sqrt{3}}$, then we have $(2+\sqrt{3})^{\cos x}+(2+\sqrt{3})^{-\cos x}=4$ or $(2+\sqrt{3})^{2 \cos x}-4(2+\sqrt{3})^{\cos x}+1=0$.

The quadratic equation above has solution $(2+\sqrt{3})^{\cos x}=2+\sqrt{3}, \quad(2+\sqrt{3})^{\cos x}=2-\sqrt{3}$ or $\cos x= \pm 1$.
It implies that $x=k \pi$, where k is any integer.

Round 8

Let the radius of the ice cream scoop be $r=5$. Since the cone is symmetric, the points of tangency A and B of the ice cream scoop to the cone make a circle on the inside of the cone. The center of the ice cream scoop must coincide with the center of the base of the cone (Figure). From the figure, angle $C B D$ is a right angle, so we have $x^{2}=5^{2}+10^{2} \Rightarrow x=5 \sqrt{5}$. Since $C A D$ and $C B D$ are similar triangles, $\frac{5}{5 \sqrt{5}}=\frac{r}{10} \Rightarrow 10(5)=5 \sqrt{5} r \Rightarrow r=\frac{10}{\sqrt{5}} \frac{\sqrt{5}}{\sqrt{5}} \Rightarrow r=2 \sqrt{5}$

If !
 it in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 9

Using the law of cosines we have: $a^{2}=36+64-48 \sqrt{2}, b^{2}=x^{2}+36-6 x \sqrt{3}$, and $c^{2}=x^{2}+64-16 x \cos \left(30^{\circ}+45^{\circ}\right)$, where $\cos \left(30^{\circ}+45^{\circ}\right)=(\sqrt{6}-\sqrt{2}) / 4$. Using the Pythagorean Theorem we have:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \Rightarrow x^{2}+64-\frac{16 x(\sqrt{6}-\sqrt{2})}{4}=36+64-48 \sqrt{2}+x^{2}+36-6 x \sqrt{3} \\
& \Rightarrow \frac{-16 x(\sqrt{6}-\sqrt{2})}{4}=72-48 \sqrt{2}-6 x \sqrt{3} \\
& \Rightarrow-4 x(\sqrt{6}-\sqrt{2})+6 x \sqrt{3}=72-48 \sqrt{2} \\
& \Rightarrow x(-4(\sqrt{6}-\sqrt{2})+6 \sqrt{3})=72-48 \sqrt{2} \\
& \Rightarrow x=\frac{72-48 \sqrt{2}}{-4 \sqrt{6}+4 \sqrt{2}+6 \sqrt{3}} \\
& \Rightarrow x=0.66
\end{aligned}
$$

Round 10

Let $\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\ldots=s$. Then factoring out $\frac{1}{x}$ gives us $\frac{1}{x}\left(1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\ldots\right)=s$.
Since $1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\ldots=2019$, we have $1+\frac{1}{x} \llbracket 2019=2019 \quad \Rightarrow \quad \frac{1}{x}=\frac{2018}{2019}$.
Adding 1 to both sides of the second equation gives us $1+\frac{1}{y}+\frac{1}{y^{2}}+\frac{1}{y^{3}}+\ldots=2018$.
Then $\quad 1+\frac{1}{y}-2018=2018 \quad \Rightarrow \quad \frac{1}{y}=\frac{2017}{2018}$.
Then $\left(\frac{1}{x}\right) \div\left(\frac{1}{y}\right)=\frac{(2018)^{2}}{(2019)(2017)}$.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

