ROUND \#1

Gainesville College
Mathematics Tournament
For Two-Year Colleges
April 2, 2005

$\triangle \mathrm{ABC}$ is equilateral with side length 2. Attach circular arcs $\overparen{A B}, \overparen{A C}$, and $\overparen{B C}$ with centers at C, B, and A respectively. Find the exact value, or an approximation accurate to 5 decimal places, of the area of the resulting figure.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

ROUND \#2

Gainesville College
Mathematics Tournament
For Two-Year Colleges
April 2, 2005

Pump \boldsymbol{A} can empty a pool in 5 hours if pump \boldsymbol{B} helps out for 3 hours. Likewise, pump \boldsymbol{B} can empty the pool in 6 hours if pump \boldsymbol{A} helps for 3 hours. How long would it take for both pumps, working together the entire time, to empty
 the pool?

ROUND \#3

Gainesville College
Mathematics Tournament
For Two-Year Colleges
April 2, 2005

If $x+y+z=2$ and $x y+y z+x z=1$, what is $x^{2}+y^{2}+z^{2}$?

ROUND \#4

Gainesville College
Mathematics Tournament
For Two-Year Colleges
April 2, 2005

Find the $2005^{\text {th }}$ digit (after the decimal point) in the decimal representation of $\frac{1}{7}$.

ROUND \#5

Gainesville College
Mathematics Tournament
For Two-Year Colleges
April 2, 2005

At the start of the day, Michael has between $\$ 140$ and $\$ 150$ in one-dollar bills and five-dollar bills. At the end of the day, he again has only one-dollar and five-dollar bills, but he has the same number of one-dollar bills as he had five-dollar bills at the beginning of the day, and the same number of five-dollar bills as he had onedollar bills at the beginning of the day. If he ends the day with exactly $\frac{1}{3}$ less money than he began it with, what was the exact starting amount?

