

Gainesville College
 Eleventh Annual Mathematics Tournament
 For Two-Year Colleges
 April 2, 2005

Solutions for the Afternoon Team Competition

Round 1: Let $A=$ the area of the figure, $A_{S}=$ the area of the circular sector of the circle of radius 2 subtended by a central angle of 60°, and $A_{T}=$ the area of the equilateral triangle of side length 2. Then $A=3 A_{S}-2 A_{T}$.
$A_{S}=\frac{1}{6} \pi(2)^{2}$, since the sector is one sixth of the circle, and $A_{T}=\frac{\sqrt{3}}{4}(2)^{2}$.
So $A=3\left(\frac{2}{3} \pi\right)-2 \sqrt{3}=2(\pi-\sqrt{3})$

Round 2: \quad Let x be the time pump A can empty the pool by itself and y be the time pump B can empty the pool by itself. Then,

$$
\left(\frac{1}{x}\right) 5+\left(\frac{1}{y}\right) 3=1 \text { and }\left(\frac{1}{x}\right) 3+\left(\frac{1}{y}\right) 6=1
$$

If we solve the system of equations, we will obtain $x=7$ and $y=10.5$.

Now let t be the time for both pumps working together to empty the pool. Thus,

$$
\left(\frac{1}{7}\right) t+\left(\frac{1}{10.5}\right) t=1 \Rightarrow\left(\frac{1}{7}+\frac{2}{21}\right) t=1 \Rightarrow\left(\frac{5}{21}\right) t=1
$$

Therefore, $t=\frac{21}{5}=4.2$ hours.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 3: $\quad x+y+z=2 \Rightarrow(x+y+z)^{2}=(2)^{2}$. So,

$$
x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z=4 \Rightarrow x^{2}+y^{2}+z^{2}+2(x y+x z+y z)=4 .
$$

Since $x y+x z+y z=1$, we have

$$
x^{2}+y^{2}+z^{2}+2=4 \Rightarrow x^{2}+y^{2}+z^{2}=2 .
$$

Round 4: $\quad \frac{1}{7}=0 . \overline{142857}$

Since $2005=6(334)+1$, the $2005^{\text {th }}$ digit of the decimal representation of $\frac{1}{7}$ is the same as the first digit after the decimal point, which is 1.

Round 5: Let x be the number of five-dollar bills and y be the number of one-dollar bills Michael originally had. Then we have

$$
\left(\frac{2}{3}\right)(5 x+y)=5 y+x
$$

Solving for y, we get $y=7\left(\frac{x}{13}\right)$. Since y is an integer, then x must be divisible by 13 . So, we get the following pairs, and the total sum of money.

x	y	Total $=5 x+y$
13	7	72
26	14	144
39	21	216

Since he had between $\$ 140$ and $\$ 150$, it must be $\$ 144$.

Round 6: The total number of crossing points is $10 \times 7=70$. The total number of ordered pairs of points is $70 \times 69=4830$. The number of ordered horizontal pairs is $7 \times 6 \times 10=420$. The number of ordered vertical pairs is $10 \times 9 \times 7=630$. The number of ordered non-vertical, non-horizontal pairs is $4830-420-630=3780$.

One rectangle can be defined by giving an ordered non-vertical, non-horizontal pair of points that make the opposite corners. However, the same rectangle is given by 4 different such pairs.

Therefore, the number of rectangles is $\frac{3780}{4}=945$.

Round 7: \quad Since $f(g(x))=3+2 \sqrt{x}+x=2+(1+2 \sqrt{x}+x)=2+(1+\sqrt{x})^{2}$, we can have

$$
f(x)=2+x^{2} .
$$

Round 8: $\quad \frac{b_{1}}{b_{2}}=\frac{1}{13} \Rightarrow b_{2}=13 b_{1}=13 \times .5=6.5 \mathrm{ft}$.

$$
\begin{aligned}
& A=28 f t^{2} \text { and } A=\frac{\left(b_{1}+b_{2}\right) h}{2}=\frac{(7 f t) h}{2} \Rightarrow \frac{7 h}{2}=28 \Rightarrow h=8 f t \\
& \left(b_{2}-b_{1}\right)^{2}+h^{2}=x^{2} \Rightarrow(6 f t)^{2}+(8 f t)^{2}=x^{2} \Rightarrow x^{2}=100 f t^{2} \Rightarrow x=10 f t
\end{aligned}
$$

Round 9: \quad To number the first 9 pages took 9 digits.
To number the pages between 10 and 99 took $2 \times 90=180$ digits.
To number the pages between 100 and 999 took $3 \times 900=2700$ digits.

So pages 1 to 999 took $9+180+2700=2889$ digits.
The remaining number of digits is $3293-2889=404$.
There are 4 digits per page at this time, so we have an extra 101 pages.
The total number of pages in the book is then $999+101=1100$.

Round 10: Let $\theta=\tan ^{-1}\left(\frac{4}{3}\right)$. Then the triangle at the right could be drawn. By the Pythagorean Theorem, the length of the hypotenuse is 5, and $\sin \theta=\frac{4}{5}$. Therefore,

3
$\cos \left(\sin ^{-1}\left(\tan \left(\cos ^{-1}\left(\sin \left(\tan ^{-1}\left(\frac{4}{3}\right)\right)\right)\right)\right)\right)=\cos \left(\sin ^{-1}\left(\tan \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)\right)\right)$

Now, let $\phi=\cos ^{-1}\left(\frac{4}{5}\right)$. Then the triangle at the right could be drawn. By the Pythagorean Theorem, the length of the missing side is 3 , and $\tan \phi=\frac{3}{4}$. Then,

4

$$
\cos \left(\sin ^{-1}\left(\tan \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)\right)\right)=\cos \left(\sin ^{-1}\left(\frac{3}{4}\right)\right)
$$

Finally, let $\alpha=\sin ^{-1}\left(\frac{3}{4}\right)$. Then the triangle at the right could be drawn.
By the Pythagorean Theorem, the length of the missing side is $\sqrt{7}$, and $\cos \alpha=\frac{\sqrt{7}}{4}$. Thus,

$$
\cos \left(\sin ^{-1}\left(\frac{3}{4}\right)\right)=\frac{\sqrt{7}}{4}
$$

