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Gainesville College – Eleventh Annual Mathematics 

Tournament 
 

You may write in this test booklet.  Only the electronic form will be graded.  Correct 

answers are awarded one point.  Incorrect or blank answers are awarded 0 points. 
 

 

 

 

1. Find 2log x
dx

x∫ . 

 

 a) ( )22

1
log

2
x C+  

 b) ( ) ( )2

1
log ln

2
x x C+  

 c) ( )21
ln

ln 2
x C+  

 d) ( )( )2

1
log ln ln

ln 2
x x x C+  

 e) none of the above 

 

 

2. A general solution for the differential equation ( )21 2 0
dy

x xy
dx

+ − =  is  

 

 a) 
2

0
1

C
y ,C

x
= ≥

+
 

 b) ( )21 0y C x ,C= + ≥  

 c) ( )21 0y x C,C= + + ≥  

 d) no solution exists 

 e) none of the above 

 

 

 

 

 

 



3. Let ( )f x  be a one-to-one continuous function such that ( )1 4f =  and ( )6 2f = .  

 Assume ( )
6

1

15f x dx =∫ .  Calculate ( )
4

1

2

f x dx−∫ . 

 

 a) 5 

 b) 6 

 c) 7 

 d) 8 

 e) none of the above 

 

 

4. A function ( )f x  has a relative maximum value at x c= .  Which of the following 

 must be true? 

 

 a) ( ) 0f c′ =  

 b) f ′  changes from positive to negative at c 

 c) ( ) 0f c′′ <  

 d) all of the above 

 e) none of the above 

 

 

5. How many real solutions does the equation 7 5 3 1 0x x x+ + + =  have? 

 

 a) None 

 b) One 

 c) Three 

 d) Seven 

 e) none of the above 

 

 

6. If ( ) ( ) ( )
( )

3 4

3

1 2

1

x x
f x

x

− +
=

+
, what is the equation of the tangent line at 0x = ? 

 

 a) 16 64y x= − +  

 b) 16y x= −  

 c) 64y x=  

 d) 64 16y x= −  

 e) none of the above 

 

 

 



7. The length of a rectangle is 16 inches and the width is 13 inches.  If the area A is 

 increasing at 1 2in / min , at what rate must the width be changing so that the 

 length is increasing at 5 in / min ? 

 

 a) 4 in / min−  

 b) 4 in / min  

 c) 
1

5
in / min  

 d) 
1

5
in / min−  

 e) none of the above 

 

 

8. Find the maximum value of the function ( ) 2 2

x x

f x e e
− 

= − +  
 

. 

 a) 2−  

 b)   0 

 c) 1−  

 d) e−  

 e) none of the above 

 

 

9. Find 
2

2

d y

dx
 if 2 4 6x y− = . 

 

 a) 
7

3

16y

−
 

 b) 
3

y

x
 

 c) 
4

2 6

4

y x

y

−
 

 d) 
4 2

7

2 3

4

y x

y

−
 

 e) none of the above 

 

 

 

 

 

 



10. Find 
2

1 1 1
lim

2 2y y x y x→

  
−  − + −  

. 

 

 a) 0 

 b) ln x  

 c) 
2

1

x
−  

 d) ∞  

 e) none of the above 

 

 

11. Evaluate 
2

0

cos

sin

x
dx
x

π

∫ . 

 

 a) 0 

 b) 1 

 c) 2 

 d) 3 

 e) none of the above 

 

 

12. Find the differential dy of 
x

e
y
e

=  when 1x = . 

 

 a) 1dx  

 b) 0dx  

 c) 1dx−  

 d) edx  

 e) none of the above 

 

 

13. Tell where the function given by ( )
2

2

1

4

x
f x

x

−
=

−
 is continuous. 

 

 a) [ ]11,−  

 b) ( ) ( )2 2, ,−∞ − ∪ ∞  

 c) ( ) ( ) ( )2 11 2, , ,−∞ − ∪ − ∪ ∞  

 d) ( ) [ ] ( )2 1 1 2, , ,−∞ − ∪ − ∪ ∞  

 e) none of the above 

 



14. Find the volume V of the solid of revolution formed by revolving the region 

 bounded by 
1

y
x

= , 0y = , 1x = , and x e=  about the y-axis. 

 

 a) 2π  
 b) 1 

 c) ( )2 1eπ −  

 d) 1e −  

 e) none of the above 

 

 

15. Find the point of inflection of ( )
( )2

2

1

x
r x

x

−
=

+
. 

 

 a) ( )2 0,  

 b) 
1

5
12
,

 
 
 

 

 c) 
2

8
27
,

 
 
 

 

 d) 
2

4
25
,

 
 
 

 

 e) none of the above 

 

 

16. If f  is continuous on [ ]0 2, , differentiable on ( )0 2, , ( )0 2f = , ( )2 8f = , 

 and ( ) 3f x′ ≤  for all x in ( )0 2, , find ( )1f . 

 

 a) 3 

 b) 1 

 c) 10 

 d) There is not enough information. 

 e) none of the above 

 

 

17. Find all values of k so that y kx=  is tangent to 2y x k= + . 

 

 a) 0 

 b) 0 and 2 

 c) 0 and 4 

 d) 0 and 
1

4
 

 e) none of the above 



18. If x and y are real numbers such that 2 2 8x y+ = , what is the maximum possible 

 value of x y− ? 

 

 a) 2 

 b) 2  

 c) 
2

2
 

 d) 4 

 e) none of the above 

 

 

19. If ( )1 n
y n x= − , where n is a positive integer, what is 

n

n

d y

dx
? 

 

 a) ( )2n ! 

 b) ( )1n − ! 2n  

 c) 0 

 d) n! 

 e) none of the above 

 

 

20. Evaluate ( )1/
0

lim 1 3
x

x
x

→
−  . 

 

 a) 3e  

 b) 3e−  

 c) 1 

 d) ∞  

 e) none of the above 

 

 

21. Evaluate: 
4

2

0
16 x dx−∫  

 

 a) 16π  

 b) 8π  

 c) 4π  

 d) 2π  

 e) none of the above 

 

 

 



22. Determine which function would produce the greatest area between the 

function and ( ) 0g x = from 1x =  to 100x = . 

 

 a) 10( )f x x=  

 b) ( ) 10xf x =  

 c) ( ) 10f x x=  

 d) 10

10( ) log ( )f x x=  

 e) none of the above 

 

 

Reminder 

Question 23 will be used again as a tie-breaker, if necessary. 
 

 

23. Consider the particle traveling clockwise on the elliptical path 

 
2 2

1
100 25

x y
+ = .  The particle leaves the orbit at the point ( )8, 3−  and travels 

 in a straight line tangent to the ellipse.  At what point will the particle 

 cross the y-axis? 

 

 a) 
25

0,
3

 
 
 

 

 b) 
25

0,
3

 − 
 

 

 c) ( )0, 9  

 d) 
7

0,
3

 
 
 

 

 e) none of the above 

 

 

24. If the tangent line to ( )y f x=  at ( ),a b has slope 0m ≠ , then what slope 

 does the tangent line to ( )1y f x−=  at ( ),b a have? 

 

a) m  

b) m−  

c) 
1

m
 

d) 
1

m
−  

e) none of the above 

 



25. Let f be continuous on [ ]1, 3− and differentiable on ( )1, 3− , with 

 ( )1 5f − =  and ( )3 10f = .  Then there must be a number k in ( )1, 3−  such 

 that  

 

 a) ( ) 5
'

4
f k =  

 b) ( ) 10f k =  

 c) ( )'' 0f k ≥  

 d) ( )' 0f k =  

 e) none of the above 

 

 

26. Two lines pass through the point ( )3, 0  and are tangent to the 

 parabola 2y x= .  One of the lines is the x-axis itself.  Find an equation for 

 the other line. 

 

 a) 3x =  

 b) 12 36y x= −  

 c) 6 18y x= −  

 d) 3 9y x= −  

 e) none of the above 

 

 

27. If ( ) 4f x x cx= − , then the minimum value of ( )f x  is  

 

 a) ( )f c  

 b) 3

4

c
f
 
  
 

 

 c) no minimum exists 

 d) ( )3f c  

 e) none of the above 

 

 

 

 

 

 

 

 

 



28. Find the 151
st
 derivative of ( ) ( )sinf x x= − . 

 

 a) ( )cos x− −  

 b) ( )sin x−  

 c) cos x  

 d) sin x  

 e)  none of the above 

 

 

 

29. Find all critical numbers of the greatest integer function ( ) � �f x x= . 

 

a) all integers 

b) all real numbers except integers 

c) all real numbers 

d) no critical numbers 

e) none of the above 

 

 

30. Evaluate: 
( )21

1
lim

lnx

x

x→

−
 

 

 a) 
1

2
 

 b) ∞  

 c) 1 

 d) 0 

 e)  none of the above 

 

 

31. Evaluate: 
2

1
1xe dx

−
−∫  

 

 a) 2 1 3e e−− −  

 b) 2 1 3e e−+ +  

 c) 2 1 3e e−− +  

 d) 2 1 3e e−+ −  

 e) none of the above 

 

 

 

 

 



32. Which of the following definite integrals has a positive value? 

 

 a) ( )
2

3

0
sin 3x dx

π

π+∫  

 b) ( )
0

2

3

sin 3x dxπ π+∫  

 c) ( )
0

3

2

sin 3x dx− +∫ π π  

 d) ( )
3

2

0
sin 3x dx

−

+∫
π

π  

 e) none of the above 

 

 

33. Solve the differential equation ( )'' cosf x x= , 
3

'
2

f e
π  = 

 
, ( )0 1f = − . 

 

 a) ( )sin 1x e x− +  

 b) ( )sin 1x e x+ +  

 c) ( )1 cose x x+ +  

 d) ( )1 cose x x+ −  

 e) none of the above 

 

 

34. Find: 2 lnx x dx∫  

 

 a) 3 31 1
ln

3 9
x x x C− +  

 b) 2 lnx x x C+ +  

 c) 3 21 1
ln

3 3
x x x C− +  

 d) 31
ln

3
x x x C+ +  

 e) none of the above 

 

 

 

 

 

 

 



35. Find: 
2 2

1

16
dx

x x−∫  

 

 a) 
1

4
− arcsec

4

x
C

  + 
 

 

 b) 
1

4
arcsec

4

x
C

  + 
 

 

 c) 
216

16

x
C

x

−
− +  

 d) 
216

16

x
C

x

−
+  

 e) none of the above 

 

 

36. The derivative of ( ) 5 xf x x= is 

 

 a) 15 xxx −  

 b) 5 lnxx x  

 c) 
5

ln

xx

x
 

 d) ( )5 1 lnxx x+  

 e) none of the above 

 

 

37. How much work is done by a colony of ants in building a conical ant hill 

 with height and diameter of the base both 1 ft, using sand initially at 

 ground level and with a density of 150 lb/ft
3
? 

 

 a) 
75

8
π  ft-lb 

 b) 
25

2
π  ft-lb 

 c) 
25

8
π  ft-lb 

 d) 25π   ft-lb 

 e)  none of the above 

 

 

 

 

 



38. Air is escaping from a spherical balloon at the constant rate of 

 200π cm3/s.  What is the radius of the balloon when its radius is 

 decreasing at 2 cm/s? 

 

a) 5 cm 

b) 5 2  cm 

c) 10 cm 

d) 12.5 cm 

e) none of the above 

 

 

39. Find the derivative of ( ) ( )( )ln lnf x x= . 

 

 a) ( )
( )
1

'
ln

f x
x x

=  

 b) ( )
( )
1

'
ln

f x
x

=  

 c) ( ) ( )2ln
'

x
f x

x
=  

 d) ( ) 1
'f x

x
=  

 e) none of the above 

 

 

40. Calculate 
5

7cos
x

d
t dt

dx
 
  ∫  at 0x = . 

 

 a) 
1

2
−  

 b) 
1

2
 

 c) 1 

 d) -1 

 e) none of the above 

 


