Gainesville State College
 Thirteenth Annual Mathematics Tournament

April 14, 2007

Solutions for the Afternoon Team Competition

Round 1
Let x represent the total number of coins the man has.

$$
\begin{aligned}
& \text { number of dimes }=\frac{1}{4} x \\
& \text { number of nickels }=\frac{1}{2} x \\
& \text { number of quarters }=x-\frac{1}{4} x-\frac{1}{2} x=\frac{4}{4} x-\frac{1}{4} x-\frac{2}{4} x=\frac{1}{4} x
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& .90=.25 \times(\text { number of quarters })+.10 \times(\text { number of dimes })+.05 \times(\text { number of nickels }) \\
& .90=.25\left(\frac{1}{4} x\right)+.10\left(\frac{1}{4} x\right)+.05\left(\frac{1}{2} x\right) \Rightarrow .90=\frac{.25 x}{4}+\frac{.10 x}{4}+\frac{.05 x}{2} \\
& \Rightarrow .90=\frac{.25 x}{4}+\frac{.10 x}{4}+\frac{.10 x}{4} \Rightarrow .90=\frac{.45 x}{4} \\
& \Rightarrow 4(.90)=4\left(\frac{.45 x}{4}\right) \Rightarrow 3.6=.45 x \Rightarrow \frac{3.6}{.45}=\frac{.45 x}{.45} \Rightarrow x=8
\end{aligned}
$$

Thus, the number of nickels $=\frac{1}{2}(8)=4$, the number of dimes $=\frac{1}{4}(8)=2$, and the number of quarters $=\frac{1}{4}(8)=2$.

Round 2

The factors must have some order of $-2,-1,1$, and 2 . Thus, the numbers are $5,6,8$, and 9 . Therefore, the sum is 28 .

Round 3

Let r be the radius of the circle and a be the length of a side of the square. Since the area of the circle equals 12.5π square units, we obtain

$$
\pi r^{2}=12.5 \pi \Rightarrow r^{2}=12.5
$$

Now, using the Pythagorean Theorem for the triangle marked in the picture, we obtain

$$
a^{2}=r^{2}+r^{2}=2 r^{2}=2 \times 12.5=25
$$

So $a=5$ and the perimeter $=4 a=4 \times 5=20$ units.

Round 4

To determine the number of diagonals in an n-gon, start with counting the total number of line segments that connect two vertices, including the sides, and then subtract n from the result to take care of the sides. Starting at a given vertex, there are $n-1$ lines to be drawn to the other vertices. The next vertex already has a line drawn to the first vertex, so only $n-2$ line segments can be drawn. The third vertex can be connected to only $n-3$ vertices, and so on, until we reach the last vertex, which already has a line segment to every other vertex. The total number of line segments drawn is

$$
(n-1)+(n-2)+(n-3)+\ldots+1+0=\frac{n(n-1)}{2}
$$

Subtracting n gives the number of diagonals of a regular n-gon: $\frac{n(n-1)}{2}-n=\frac{n(n-3)}{2}$.
In our case, we have $\frac{n(n-3)}{2}=44$. So n must be 11 .

Round 5

The difference of consecutive squares is an odd number because $(x+1)^{2}-x^{2}=2 x+1$.

Therefore, the 964 must be the last three digits of the larger square and the last three digits of the smaller square must be either 469 or 649 .

Since the rest of the digits are identical, the difference of squares must be either $964-469=495$ or $964-649=315$.

So either $2 x+1=495$ or $2 x+1=315$. Hence, either $x=247$ or $x=157$.
$247^{2}=61,009$ and $248^{2}=61,504$ do not work.
But $157^{2}=24,649$ and $158^{2}=24,964$ do work.
Therefore, the consecutive squares are 24,649 and 24,964 .

Round 6

$\arctan x+\arctan b=45^{\circ} \Rightarrow \arctan x=45^{\circ}-\arctan b$.
So, $x=\tan \left(45^{\circ}-\arctan b\right)=\frac{\tan 45^{\circ}-\tan (\arctan b)}{1+\tan 45^{\circ} \tan (\arctan b)}=\frac{1-b}{1+b}$.

Round 7

Let $z=\frac{1}{x+3}$. Then $x=\frac{1-3 z}{z}$.
So, $f(z)=f\left(\frac{1}{x+3}\right)=\frac{1}{2-5 x}=\frac{1}{2-5\left(\frac{1-3 z}{z}\right)}=\frac{z}{2 z-5+15 z}=\frac{z}{17 z-5}$.
Therefore, $f(x)=\frac{x}{17 x-5}$.

Round 8

$$
\begin{aligned}
1 \cdot 2+2 \cdot 3+3 \cdot 4 & +4 \cdot 5+\ldots+98 \cdot 99+99 \cdot 100 \\
& =(2-1) \cdot 2+(3-1) \cdot 3+(4-1) \cdot 4+\ldots+(99-1) \cdot 99+(100-1) \cdot 100 \\
& =2 \cdot 2-2+3 \cdot 3-3+4 \cdot 4-4+\ldots+99 \cdot 99-99+100 \cdot 100-100 \\
& =\left(2^{2}+3^{2}+4^{2}+\ldots+99^{2}+100^{2}\right)-(2+3+4+\ldots 99+100) \\
& =\left(1^{2}+2^{2}+3^{2}+4^{2}+\ldots+99^{2}+100^{2}\right)-(1+2+3+4+\ldots 99+100) \\
& =\frac{(100)(101)(201)}{6}-\frac{(100)(101)}{2}=333,300
\end{aligned}
$$

Round 9

The speed of Pump A is $\frac{1}{8}$ pool/hour. The speed of Pump B is $\frac{1}{7}$ pool/hour. The combined speed of Pump A and Pump B is $\left(\frac{1}{8}\right)(0.7)+\left(\frac{1}{7}\right)(0.8)=\frac{7}{80}+\frac{8}{70}$ pool/hour. So it will take $1 \div\left(\frac{7}{80}+\frac{8}{70}\right)=4.955752212$ hours ≈ 4 hours and 57 minutes.

Round 10

When the two shaded regions have the same area, the triangle has the same area as the quarter circle. So,

$$
\begin{aligned}
& \frac{1}{2} \tan \theta=\frac{1}{4} \pi \\
& \tan \theta=\frac{\pi}{2} \\
& \theta=\arctan \left(\frac{\pi}{2}\right) \\
& \theta \approx 1.004
\end{aligned}
$$

