UNG $\begin{aligned} & \text { UNIVERSITY } \\ & \text { NORTH GEORGIA }\end{aligned}$

University of North Georgia
Sophomore Level Mathematics Tournament

April 5, 2014

Solutions for the Afternoon Team Competition

Round 1

The answer is 12 pieces.

Round 2

We think about the complement - people choose different numbers.
The first person can choose any number (positive integer less than 11: from 1 to 10), then the second person would have 9 (different) numbers to choose (9/10), the third person 8 (different) numbers to choose, etc. So the probability that the 4 people choose different numbers is:
$1 \square \frac{9}{10} \frac{8}{10}=\frac{504}{1000}$. Hence the probability that two of the people choose the same number is:
$1-\frac{504}{1000}=\frac{496}{1000}=0.496$.

Round 3

Since $f(x)$ is divisible by $(x-1)^{3}, x^{4}+a x^{2}+b x+c=(x-1)^{3}(x-d)$ for some real number d.
Now if we equate the coefficient of x^{3} on both sides we see that $d=-3$.
Then $f(2)=(2-1)^{3}(2-(-3))=5$.

Round 4

We get 16 and 8 from the fact that the triangles are congruent. Then we use the Pythagorean Theorem twice getting $a=\sqrt{220}=2 \sqrt{55}$ and $b=\sqrt{55}$. So $a+b=3 \sqrt{55}$.

Round 5

We have $\cot \alpha+\cot \beta=4$, so $\frac{1}{\tan \alpha}+\frac{1}{\tan \beta}=4$ and $\frac{\tan \beta+\tan \alpha}{\tan \alpha \tan \beta}=4$.

Thus, $\tan \alpha \tan \beta=\frac{\tan \alpha+\tan \beta}{4}=\frac{7}{4}$.
Then $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{7}{1-\frac{7}{4}}=\frac{28}{4-7}=-\frac{28}{3}$

Round 6

Let r be the radius in inches. Then the area in square inches is πr^{2} which must be a natural number according to the problem.
Since $2.54=\frac{127}{50}$, the area in square centimeters is $\pi\left(\frac{127}{50} r\right)^{2}=\frac{16129}{2500} \pi r^{2}$. The smallest natural number value of πr^{2} for which this is an integer is 2500 . So $\pi r^{2}=2500$ and $r^{2}=\frac{2500}{\pi}$. Then $r=\frac{50}{\sqrt{\pi}}$ inches.

Round 7

$f(1)=2+4+6+\cdots+100=(2+4+6+\cdots+98)+100$ and
$g(1)=1+3+5+\cdots+99=1+(2+1+4+1 \cdots+98+1)=50+(2+4+6+\cdots+98)$
The sum $(2+4+6+\cdots+98)$ can be evaluated as $2(1+2+3+\cdots+49)=49(50)=2450$.
Consequently, $f(1)=2450+100=2550$ and $g(1)=50+2450=2500$.
So $f^{2}(1)-g^{2}(1)=(f(1)+g(1))(f(1)-g(1))=(2550+2500)(2550-2500)=252,500$
Dividing 252,500 by 100 gives 2525 .

Round 8

We are looking for $a b c d<1200$, where a, b, c, and d are primes with $a<b<c<d$. We solve this problem by finding the largest possible value for a, then for b, and so on. It turns out you can find the answer by making a dozen or so calculations.

$$
2 \cdot 3 \cdot 5 \cdot 7=210
$$

1. Establish a benchmark by multiplying consecutive primes: $\quad 3 \cdot 5 \cdot 7 \cdot 11=1155$
$5 \cdot 7 \cdot 11 \cdot 13=5005$
which is the smallest value of $a b c d$ where $a>3$, but it's too big. So a is 2 or 3, and our current benchmark for $a b c d$ is 1155 .
2. $3 \cdot 5 \cdot 7 \cdot 13$ is the smallest number involving $a=3$ that we haven't checked yet, but it's 1365 which is too big. So the only remaining numbers to check have $a=2$, which means $b c d<600$ where b is at least 3 .

From now on we are assuming $a=2$ and we want to find the largest value of $b c d<600$.

$$
3 \cdot 5 \cdot 7=105
$$

3. Establish a benchmark for $b c d$ by multiplying consecutive primes: $\quad 5 \cdot 7 \cdot 11=385$
$7 \cdot 11 \cdot 13=1001$
which is the smallest value of $b c d$ where $b>5$, but it's too big. So b is 3 or 5 .
4. Assuming $b=5$:

$$
5 \cdot 7 \cdot 13=455
$$

$5 \cdot 7 \cdot 17=595$
which is the largest number less than 600 divisible by 5 . This is our new benchmark for bcd.
5. The only number greater than 595 but less than 600 that is divisible by 3 is 597 , which isn't a product of three primes. So we don't need to check the possibility of $b=3$.

Thus $2 \cdot 5 \cdot 7 \cdot 17=1190$, which is larger than our previous $a b c d$ benchmark of 1155 .

Round 9

Note that paths cannot be repeated. We will count all the possible paths from S to F that pass through M or N separately and then subtract any paths that are repeated. This is known as an inclusion-exclusion method.

Part 1: Paths from S to F through M (or simply $S M F$ paths) - these go from S to M and then to F. There are exactly 3 paths from S to M (of length 3 each). There are exactly 10 paths from M to F (of length 5 each). For each of the $2 S M$ paths, there are $10 M F$ paths giving a total of $3 \cdot 10=30$ SMF paths.

Part 2: Paths from S to F through N (or simply $S N F$ paths) - these go from S to N and then to F. There are 15 paths from S to N (of length 6 each). There are 2 paths from N to F (of length 2 each). For each of the $15 S N$ paths, there are $2 N F$ paths giving a total of $15 \cdot 2=30 S N F$ paths.

Part 3: Paths through both M and N together (or simply $S M N F$ paths) - these go from S to M then M to N then N to F. From part 1, we have $2 S M$ paths (each of length 3). There are only 3 paths from M to N (each of length 3). From part 2, we have $2 N F$ paths (each of length 2). For each of the $3 S M$ paths, there are $3 M N$ paths for a total of $3 \cdot 3=9 S M N$ paths. For each of these 9 paths, there are $2 N F$ paths, so there will be a total of $9 \cdot 2=18 S M N F$ paths.

Notice that the $M N$ paths have been counted twice and so we have to take out one of them. So there are $30+30-18=42$ paths from S to F that pass through M or N.

This solution can also be written using Combinations:

$$
C(3,2) \cdot C(5,3)+C(6,4) \cdot C(2,1)-C(3,2) \cdot C(3,2) \cdot C(2,1)=30+30-18=42 .
$$

Round 10

For the logarithm with base between 0 and 1 to be positive, the argument must be between 0 and 1 , so we get $0<\frac{1}{x^{2}-2}<1$. To satisfy the "left" side of the above, $x^{2}-2$ must be positive. To satisfy the "right" side, $x^{2}-2$ must be larger than 1 . The condition $x^{2}-2$ larger than 1 is equivalent to both of these conditions, so we get $x^{2}-2>1$ which gives $x^{2}>3$. The solution is $(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)$.

