UNG $\begin{aligned} & \text { UNIVERSITY of } \\ & \text { NORTH GEORGIA }\end{aligned}$

University of North Georgia
 Sophomore Level Mathematics Tournament

April 11, 2015

Solutions for the Afternoon Team Competition

Round 1

If you give 1 cookie to the first friend, 2 cookies to the second friend, etc., after 19 friends you have given away $1+2+\cdots+19=190$ cookies. The 10 remaining cookies are not enough for a $20^{\text {th }}$ friend, so you give them to the $19^{\text {th }}$ friend. In fact, 20 friends would require at least $1+2+\cdots+20=210$ cookies, so the largest number of friends that can receive cookies is 19 .

Round 2

Since 1 yard $=3$ feet, 32 feet $=\frac{32}{3}$ yards. The area of the lawn is $A=l \cdot w=(15 y d)\left(\frac{32}{3} y d\right)=160 y d^{2}$.
So a 15% increase in the area is $0.15 A=(0.15)\left(160 y d^{2}\right)=24 y d^{2}$.

Round 3
$P($ at least 1 sample is all green $)=1-P($ no sample is all green $)$

$$
=1-P(\text { all samples }<10 \text { green })
$$

Because each sample is independent of the other,

$$
\begin{aligned}
& =1-P(1 \text { sample }<10 \text { green })^{656} \\
& =1-[1-P(\text { all green })]^{656} \\
& =1-\left[1-0.45^{10}\right]^{656} \\
& =1-[0.9996594937]^{656} \\
& =1-0.7997867382 \\
& =0.2002132618
\end{aligned}
$$

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

So, rounded to the nearest thousandth, $P($ at le~st 1 sample is all green $)=0.200$.
Round 4

Let O be the center of the circle inscribed in $A B C$. Since $\angle F A E+\angle F O E=180^{\circ}$, then $\angle F O E=130^{\circ}$.
Also, $2(\angle F D E)=\angle F O E$ implies that $\angle F D E=\alpha=65^{\circ}$.

Round 5

For the first line: $y-3 x=0$, so $y=3 x$ and $m_{1}=3$.
For the second line: $2 x-3 y=1$, so $y=\frac{2}{3} x-\frac{1}{3}$ and $m_{2}=\frac{2}{3}$.
Using the difference formula for tangent, we have
$\tan \Phi=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\frac{2}{3}-3}{1+(3)\left(\frac{2}{3}\right)}\right|=\left|\frac{-\frac{7}{3}}{3}\right|$.
So $\tan \Phi=\frac{7}{9}$, then $\Phi=\tan ^{-1}\left(\frac{7}{9}\right)=37.87^{\circ}$.
Rounded to the nearest whole degree $\Phi=38^{\circ}$

Round 6

The equation of the line through $(a, 0)$ and $(0, b)$ is $\frac{x}{a}+\frac{y}{b}=1$. Since $(4,3)$ is on the line, we have $\frac{4}{a}+\frac{3}{b}=1$. From this equation we get $\frac{4 b+3 a}{a b}=1$ and $4 b+3 a=a b$ then $a b-4 b-3 a=0$.
Multiplying $(a-4)(b-3)$ gives $a b-4 b-3 a+12$. Since $a b-4 b-3 a=0$, we have $(a-4)(b-3)=12$

Round 7

Find the roots of the quadratic using the quadratic formula.
Adding the roots gives: $\quad \tan \left(\frac{P}{2}\right)+\tan \left(\frac{Q}{2}\right)=-\frac{b}{a}$
If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Multiplying the roots gives: $\tan \left(\frac{P}{2}\right) \cdot \tan \left(\frac{Q}{2}\right)=\frac{c}{a}$
Using the addition formula gives: $\tan \left(\frac{P}{2}+\frac{Q}{2}\right)=\frac{\tan \left(\frac{P}{2}\right)+\tan \left(\frac{Q}{2}\right)}{1-\tan \left(\frac{P}{2}\right) \tan \left(\frac{Q}{2}\right)}=\frac{-\frac{b}{a}}{1-\frac{c}{a}}=\frac{-\frac{b}{a}}{\frac{a-c}{a}}=\frac{b}{c-a}$.
So, $\tan \left(\frac{P+Q}{2}\right)=\frac{b}{c-a}$. Since $R=\frac{\pi}{2}, P+Q=\frac{\pi}{2}$ which implies $\frac{P+Q}{2}=\frac{\pi}{4}$.
So, $\tan \left(\frac{\pi}{4}\right)=\frac{b}{c-a}$ which gives $1=\frac{b}{c-a}$ and $c-a=b$ and $a+b=c$.

Round 8

Let y be the speed of the current and x be Jane's paddling speed. The distance that Jane travelled after turning around is $D=1 m i+(x-y)(1 h r)$ which is equal to $(x+y) t$, where t is the time it took to travel that distance with the stream. The log is carried by the current and it travels 1 mile in time $t+1 h r$. That equation is $y(t+1 h r)=1 m i$. Dropping units (speed in $m p h$) we have $1+x-y=x t+y t$ and $y t+y=1$. Substitute the second equation into the first and simplify and you have $x=x t$ and $0=x(t-1)$. So the time t is one $h r$. The second equation then shows that the speed of the current is 0.5 mph .

Round 9

$$
\text { Denominator } \begin{aligned}
\frac{1}{99} & +\frac{2}{98}+\cdots+\frac{99}{1}=\frac{100-99}{99}+\frac{100-98}{98}+\cdots+\frac{100-1}{1} \\
& =\frac{100}{99}+\frac{100}{98}+\cdots+\frac{100}{1}-99 \\
& =\frac{100}{99}+\frac{100}{98}+\cdots+\frac{100}{2}+1 \\
& =\frac{100}{99}+\frac{100}{98}+\cdots+\frac{100}{2}+\frac{100}{100} \\
& =100\left[\frac{1}{99}+\frac{1}{98}+\cdots+\frac{1}{2}+\frac{1}{100}\right] \\
& =100 \cdot \text { Numerator }
\end{aligned}
$$

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Hence $A=\frac{1}{100}$.

Round 10

Since $A B C D E<25000$ either $A=1$ or $A=2$ and $B=1,2$, or 4 .
Since $E D C B A$ is also even, we have $A=2$. We know that $A B C D E$ is even so E must be divisible by 2 (either $2,4,6$, or 8), but 2 has already been used and none of the digits is 6 , so this leaves 4 or 8 .
Since $4(2 B C D E)=E D C B 2,4 E$ must end in 2 so $E=8$.
From above we know that since $A=2$ then $B=1,2$, or 4 , but 2 has already been used so B must be either 1 or 4 . Also, the only remaining possible digits are $1,4,5,7$, and 9 .
The following cases must be considered for B and D :

$$
\begin{array}{ll}
B=1 & D=4 \\
B=1 & D=5 \\
B=1 & D=7 \\
B=1 & D=9 \\
B=4 & D=1 \\
B=4 & D=5 \\
B=4 & D=7 \\
B=4 & D=9
\end{array}
$$

We have $4(2 B C D 8)=8 D C B 2$ (with 3 over). Therefore, $4(B C D)+3=D C B$. Trying the combinations above, $B=1$ and $D=7$ is the only one that works (i.e. $4 * \mathrm{D}+3=4 * 7+3=31$).
Now we have $4(21 C 78)=87 C 12$ and C must be either 4,5 , or 9 . Trying these for $C, C=9$.

