Twenty Second Annual University of North Georgia Mathematics Tournament

You may write in this test booklet. Only the electronic form will be graded. Correct answers are awarded one point. Incorrect or blank answers are awarded 0 points.

1. Find the integral: $\int_{0}^{\frac{\pi}{2}} \sqrt{1+\sin x} d x$
a) 4
b) $\sqrt{\pi-1}$
c) 2
d) $\frac{\sqrt{\pi}}{2}$
e) None of the above
2. A vehicle enters a 100 mile stretch of an interstate starting at speed equal to zero and stops at the end of it exactly 1.5 hours later. How many times during the drive was the vehicle speed exactly 50 mph ?
a) At least twice
b) At least three times
c) At least four times
d) At least five times
e) None of the above
3. Find the maximum value of $y=6 \cos x+14 x-5$ on $\left[-\frac{3 \pi}{2}, 0\right]$.
a) 1
b) 3
c) 5
d) 7
e) None of the above
4. If g is the inverse function of $f(x)=2 x+\ln x$, find $g^{\prime}(2)$.
a) $\frac{1}{3}$
b) $2+e^{2}$
c) $\frac{3}{2}$
d) $\frac{1}{2}$
e) None of the above
5. Find the definite integral: $\int_{0}^{1} \sqrt{x-x^{2}} d x$
a) 4
b) $\frac{1}{4}$
c) π
d) $\frac{\pi}{8}$
e) None of the above
6. If f is continuous, then $\int_{0}^{1} f(1-x) d x$ is equal to
a) $-\int_{0}^{1} f(x) d x$
b) $\int_{0}^{1} f(x) d x$
c) $\int_{0}^{1} f(-x) d x$
d) $-\int_{0}^{1} f(-x) d x$
e) None of the above
7. Find $f(t)$ so that $\int f(t) d t=\frac{t}{2} \sqrt{4-t^{2}}+2 \arcsin \left(\frac{t}{2}\right)$.
a) $\frac{1}{\sqrt{1-\frac{t^{2}}{4}}}+C$
b) $\sqrt{4-t^{2}}+C$
c) $\arcsin \left(\frac{t}{2}\right)+C$
d) $t \sqrt{4-t^{2}}+C$
e) None of the above
8. Find the number b such that the line $y=b$ divides the region bounded by the curves $y=x^{2}$ and $y=4$ into two regions with equal area.
a) $4^{2 / 3}$
b) $4^{3 / 2}$
c) $4^{1 / 3}$
d) $4^{1 / 2}$
e) None of the above
9. Find the definite integral: $\int_{0}^{1} \arcsin x d x$.
a) 1
b) $\frac{\pi}{2}-1$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{3}$
e) None of the above
10. Suppose that $\int_{0}^{x} f(t) d t=\sin x$, find $f(\pi)$.
a) 1
b) -1
c) 0
d) $\frac{\sqrt{3}}{2}$
e) None of the above
11. Evaluate the limit: $\lim _{x \rightarrow \infty} \frac{\frac{\pi}{2}-\arctan x}{\ln \left(\frac{2 x-1}{1+2 x}\right)}$.
a) 2
b) Does not exist
c) ∞
d) -1
e) None of the above
12. A light house is located on a small island, 3 km away from the nearest point P on a straight shoreline, and its light makes four revolutions per minute. How fast is the beam light moving along the shoreline when it is 1 km from P ?
a) $1600 \pi \mathrm{~km} / \mathrm{h}$
b) $480 \pi \mathrm{~km} / \mathrm{h}$
c) $1800 \pi \mathrm{~km} / \mathrm{h}$
d) $7200 \pi \mathrm{~km} / \mathrm{h}$
e) None of the above
13. If f is continuous and $\int_{0}^{2} f(x) d x=6$, evaluate $\int_{0}^{\frac{\pi}{2}} f(2 \sin \theta) \cos \theta d \theta$.
a) 3
b) 6
c) 2
d) 12
e) None of the above
14. Assume that $f^{\prime \prime}$ is continuous and that $f(1)=3, f^{\prime}(1)=2$, and $\int_{0}^{1} f(x) d x=5$.

Find $\int_{0}^{1} x^{2} f^{\prime \prime}(x) d x$.
a) 6
b) 1
c) $\frac{1}{2}$
d) -2
e) None of the above
15. Evaluate the limit: $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}$
a) -2
b) -1
c) -4
d) 2
e) None of the above
16. The figure shows a circle with radius 1 inscribed in the parabola $y=x^{2}$. Find the center of the circle.

a) $\left(0, \frac{\sqrt{3}}{2}\right)$
b) $\left(0, \frac{5}{4}\right)$
c) $\left(0, \frac{3}{4}\right)$
d) $\left(0, \frac{\sqrt{3}}{4}\right)$
e) None of the above
17. Evaluate the integral: $\int \frac{d x}{1+e^{x}}$
a) $x-1+C$
b) $x-\ln e^{x}+C$
c) $x+\ln e^{x}+C$
d) $x-\ln \left(e^{x}+1\right)+C$
e) None of the above
18. Water is poured into a conical cup at the rate of $\frac{2}{3}$ cubic inches per second. If the cup is 6 inches tall and if the top of the cup has a radius of 2 inches, how fast is the water level rising when the water is 4 inches deep?
a) $\frac{3}{8 \pi} \mathrm{in} / \mathrm{sec}$
b) $\frac{3 \pi}{8} \mathrm{in} / \mathrm{sec}$
c) $\frac{1}{4} \mathrm{in} / \mathrm{sec}$
d) $\pi \mathrm{in} / \mathrm{sec}$
e) None of the above
19. Which of the following expressions equals to $\frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)$?
a) 0
b) $(-1)^{n} \frac{n!}{x^{n}}$
c) $(-1)^{n} \frac{(n-1) \text { ! }}{x^{n+1}}$
d) $(-1)^{n} \frac{n!}{x^{n+1}}$
e) None of the above
20. Let $f(k)=\frac{d^{j}}{d x^{j}}\left(e^{k x}\right)$. Find $f^{\prime}(k)$.
a) $k^{j-1} e^{k x}\left(k^{2}+j\right)$
b) $k^{j-1} e^{k x}\left(k+j^{2}\right)$
c) $k^{j-1} e^{k x}(k x+j)$
d) $k^{j-1} e^{k x}(x+j k)$
e) None of the above
21. Find the definite integral: $\int_{1}^{4} \frac{1}{(1+\sqrt{x})^{2}} \cdot \frac{1}{\sqrt{x}} d x$
a) $\frac{6}{5}$
b) $\frac{4}{9}$
c) $\frac{3}{2}$
d) $\frac{1}{3}$
e) None of the above
22. The sequence of numbers $\left(\frac{2}{1}\right),\left(\frac{3}{2}\right)^{2},\left(\frac{4}{3}\right)^{3}, \ldots,\left(\frac{101}{100}\right)^{100}, \ldots$ gets as close as you want to:
a) ∞
b) The number is not defined.
c) 1
d) e
e) None of the above
23. What is the minimum vertical distance between the parabolas $y=x^{2}+1$ and $y=x-x^{2}$.
a) $\frac{7}{8}$
b) $\frac{5}{8}$
c) $\frac{9}{8}$
d) $\frac{1}{8}$
e) None of the above
24. If the radius of the circle increases from r_{1} to r_{2}, the average rate of change of the area of the circle with respect to the radius is
a) Greater than $2 \pi r_{2}$
b) Less than $2 \pi r_{1}$
c) Equal to $2 \pi \frac{r_{1}+r_{2}}{2}$
d) Equal to $2 \pi \frac{r_{2}-r_{1}}{2}$
e) None of the above
25. Find the limit: $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x}-x\right)$
a) 1
b) 2
c) 4
d) Does not exist
e) None of the above
26. Find the value(s) of the constant c that make(s) the function $f(x)=\left\{\begin{array}{lll}c^{2}-x^{2} & \text { if } & x<2 \\ 2(c-x) & \text { if } & x \geq 2\end{array}\right.$ continuous on $(-\infty, \infty)$.
a) $-1,-3$
b) $4,-2$
c) 2
d) Does not exist
e) None of the above
27. If $f(x)=\sqrt{x+\sqrt{x}}$, find $f^{\prime}(1)$.
a) $\frac{3 \sqrt{2}}{8}$
b) $\frac{\sqrt{2}}{2}$
c) $\frac{1}{2}$
d) 1
e) None of the above
28. Find the limit: $\lim _{y \rightarrow 0} \frac{2 e^{2 y^{2}-3 y+4}(\sin y \cos y-\sin y)}{y^{4}-y^{2}}$
a) 0
b) $2 e^{4}$
c) ∞
d) Does not exist
e) None of the above
29. Suppose you have two linear functions f and g shown below.

Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is
a) 2
b) Does not exist
c) Not enough information
d) 3
e) None of the above
30. A ball is thrown into the air and its height in feet after t seconds is given by $s(t)=80 t-16 t^{2}$. It will be at maximum height when its instantaneous velocity is zero. Find its average velocity from the time it is thrown $(t=0)$ to the time it reaches its maximum height.
a) $50 \mathrm{ft} / \mathrm{sec}$
b) $60 \mathrm{ft} / \mathrm{sec}$
c) $40 \mathrm{ft} / \mathrm{sec}$
d) $32 \mathrm{ft} / \mathrm{sec}$
e) None of the above
31. Suppose that $f(0)=0$ and $f^{\prime}(0)=2$, and let $g(x)=f(-x+f(f(x)))$. Find $g^{\prime}(0)$.
a) 0
b) 2
c) 6
d) 4
e) None of the above
32. Consider the function $f(x)=\left\{\begin{array}{ccc}x^{2} & \text { if } & x \text { is rational, } x \neq 0 \\ -x^{2} & \text { if } & x \text { is irrational } \\ \text { undefined } & \text { if } & x=0\end{array}\right.$.

Then
a) There is no a for which $\lim _{x \rightarrow a} f(x)$ exits.
b) Here may be some a for which $\lim _{x \rightarrow a} f(x)$ exists, but it is impossible to say without more information.
c) $\lim _{x \rightarrow a} f(x)$ exists only when $a=0$.
d) $\lim _{x \rightarrow a} f(x)$ exists for infinitely many a.
e) None of the above
33. Find the definite integral: $\int_{1 / 4}^{1 / 2} \frac{1}{t^{2} \sqrt{1-t^{2}}} d t$
a) $\sqrt{3}-\sqrt{15}$
b) $\sqrt{15}-\sqrt{3}$
c) $\sqrt{3}+\sqrt{15}$
d) $-\sqrt{15}-\sqrt{3}$
e) None of the above
34. A plane flying horizontally at an altitude of 1 mile and a speed of $500 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.
a) $125 \sqrt{3} \mathrm{mi} / \mathrm{h}$
b) $250 \sqrt{2} \mathrm{mi} / \mathrm{h}$
c) $250 \sqrt{5} \mathrm{mi} / \mathrm{h}$
d) $125 \sqrt{2} \mathrm{mi} / \mathrm{h}$
e) None of the above
35. Let $f(x)=x e^{-x}$. Find $f^{(2006)}(0)$.
a) -1
b) -2006
c) 2006
d) 1
e) None of the above
36. Suppose $g(x)$ is continuous on $[-1,1]$ with $g(-1)=-1$ and $g(1)=1$. Which of the following must be true?
a) There is a value of c in $(-1,1)$ where $g(c)$ equals -1 or 1 .
b) There is a unique value of c in $(-1,1)$ where $g(c)=\frac{1}{2}$.
c) There is a value of c in $(-1,1)$ where $g(c)$ equals the area of a circle with radius $\frac{1}{2}$.
d) All of the above
e) None of the above
37. Find the length of the curve with the equation $x^{2 / 3}+y^{2 / 3}=1$

a) 6
b) 4
c) 24
d) 12
e) None of the above
38. In the figure below, find the dimension of the rectangle with maximal area in the $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle with legs of length 1.

a) $\sqrt{2}, \sqrt{2}$
b) $\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}$.
c) $\frac{1}{2}, \frac{1}{4}$
d) $\frac{1}{6}, 2$
e) None of the above
39. Find the derivative $\frac{d f}{d x}$ of the function $f(x)=x^{\sin x}$.
a) $\sin x \cdot x^{\sin x-1}$
b) $\sin x \cdot x^{\cos x}$
c) $x^{\sin x}\left[\cos x \ln x+\frac{\sin x}{x}\right]$
d) $x^{\sin x} \ln (\sin x)$
e) None of the above
40. Suppose $f(x)$ is differentiable everywhere and $f(x)+2 f(-x)=\sin x$ for all real x. What is the value of $f^{\prime}\left(\frac{\pi}{4}\right)$?
a) 1
b) -1
c) $\frac{\sqrt{2}}{2}$
d) $-\frac{\sqrt{2}}{2}$
e) None of the above

