UNG $\begin{aligned} & \text { UNIVERSITY of } \\ & \text { NORTH GEORGIA* }\end{aligned}$

University of North Georgia
 Mathematics Tournament

April 1, 2017

Solutions for the Afternoon Team Competition

Round 1
From the figure below: $(\sqrt{7})^{2}+(7-x)^{2}=x^{2}$. Simplifying gives $7+49-14 x+x^{2}=x^{2}$ and then $56=14 x$ and $x=4$.

Round 2
All x, y, z are nonnegative real numbers. Using change of base, rewrite the system as:

$$
\begin{aligned}
& \frac{\log x}{\log 2}+\frac{\log y}{2 \log 2}+\frac{\log z}{2 \log 2}=2 \\
& \frac{\log y}{\log 3}+\frac{\log z}{2 \log 3}+\frac{\log x}{2 \log 3}=2 \\
& \frac{\log z}{\log 4}+\frac{\log x}{2 \log 4}+\frac{\log y}{2 \log 4}=2
\end{aligned}
$$

Thus, getting common denominators and clearing fractions gives:

$$
\begin{align*}
2 \log x+\log y+\log z & =4 \log 2 \tag{1}\\
2 \log y+\log z+\log x & =4 \log 3 \tag{2}\\
2 \log z+\log x+\log y & =4 \log 4 \tag{3}
\end{align*}
$$

Adding all three equations we get: $4 \log x+4 \log y+4 \log z=4(\log 2+\log 3+\log 4)$.
This simplifies to: $4 \log (x y z)=4 \log (2 \cdot 3 \cdot 4)$ and then $x^{4} y^{4} z^{4}=2^{4} 3^{4} 4^{4}$
Equation (3) - (1) gives: $\log z-\log x=4 \log 4-4 \log 2$. Hence, $\frac{Z}{x}=2^{4}$ and $\frac{Z}{2^{4}}=x$.
Equation (3) - (2) gives: $\log z-\log y=4 \log 4-4 \log 3$. Hence, $\frac{z}{y}=\frac{4^{4}}{3^{4}}$ and $\frac{3^{4} z}{4^{4}}=y$.
Substituting into (4), we get: $\left(\frac{z^{4}}{2^{16}}\right)\left(\frac{3^{16} z^{4}}{4^{16}}\right)\left(z^{4}\right)=2^{4} 3^{4} 4^{4}$. Hence, $\left(z^{12}\right)\left(3^{16}\right)\left(2^{-48}\right)=\left(2^{12}\right)\left(3^{4}\right)$.
Thus, $z^{12}=2^{60} 3^{-12}$. Hence, $z=\frac{2^{5}}{3}=\frac{32}{3}$. Hence, $x=\frac{\frac{32}{3}}{2^{4}}=\frac{2}{3}$ and $y=\frac{3^{4} \cdot \frac{32}{3}}{4^{4}}=\frac{3^{3}}{2^{3}}=\frac{27}{8}$.
This gives the ordered triplet $\left(\frac{2}{3}, \frac{27}{8}, \frac{32}{3}\right)$.

Round 3

For $x=1, f(1)+2 f(5)=1$. For $x=5, f(5)+2 f(1)=5$. Solving for $f(5)$ in the second equation gives $f(5)=5-2 f(1)$. Substituting into the first equation gives $f(1)+2(5-2 f(1))=1$. Solving gives $f(1)=3$.

Round 4

Triangle $A E D$ and triangle $A G B$ are congruent because $\angle A E D=\angle A G B=90^{\circ}, \overline{A E}=\overline{A G}=3$, and $\angle E A D=\angle G A B$, because they both equal $90^{\circ}-\angle D A G$. So they have the same area. Thus the area of $A B C D$ (shaded region) is the same as the area of $A E C G$ which is one quarter of the area of the small square $\left(\frac{1}{4}(6 \cdot 6)=\frac{1}{4}(36)=9\right)$. The area is 9 square units.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 5

The sum of interior angles of a regular n-sided polygon is $180^{\circ}(n-2)$. So $180(n-2)=1800$. Simplifying gives $n-2=10$ and $n=12$.

The area of a regular n-sided polygon with side length s is $A=\frac{s^{2} n}{4 \tan \left(\frac{\pi}{n}\right)}=\frac{1}{4} s^{2} n \cot \left(\frac{\pi}{n}\right)$.
In this case $s=\frac{1}{\sqrt{3}}$ and $n=12$, so $A=\frac{1}{4}\left(\frac{1}{\sqrt{3}}\right)^{2}(12) \cot \left(\frac{\pi}{12}\right)=\frac{1}{4} \cdot \frac{1}{3} \cdot 12 \cot \left(\frac{\pi}{12}\right)$. Simplifying further gives:

$$
A=\cot \left(\frac{\pi}{12}\right)=\cot \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{1+\tan \frac{\pi}{3} \tan \frac{\pi}{4}}{\tan \frac{\pi}{3}-\tan \frac{\pi}{4}}=\frac{1+\sqrt{3} \cdot 1}{\sqrt{3}-1}=\frac{1+\sqrt{3}}{\sqrt{3}-1} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{\sqrt{3}+1+3+\sqrt{3}}{3-1}=\frac{4+2 \sqrt{3}}{2}=2+\sqrt{3}
$$

Round 6

If more than 24 people show up, there will not be enough seats since there are only 24 seats. So $x>24$ or $x=25$ and $x \sim \operatorname{Bin}(25,0.92)$.

Hence, $P(x=25)=\binom{25}{25}(0.92)^{25}(1-0.92)^{25-25}=(1)(0.92)^{25}(0.08)^{0} \approx 0.1244=12.44 \%$

Round 7

From the first equation: $x^{4} y^{4}(x+y)=810$. From the second equation: $x^{3} y^{3}\left(x^{3}+y^{3}\right)=945$.
Now $2 x^{3}+(x y)^{3}+2 y^{3}=2\left(x^{3}+y^{3}\right)+(x y)^{3}=2\left(\frac{945}{x^{3} y^{3}}\right)+x^{3} y^{3}$.
Cubing both sides of the first equation gives:

$$
\begin{aligned}
& {\left[x^{4} y^{4}(x+y)\right]^{3}=(810)^{3}} \\
& x^{12} y^{12}\left(x^{3}+y^{3}+3 x^{2} y+3 x y^{2}\right)=810^{3} \\
& x^{12} y^{12}\left(x^{3}+y^{3}+3 x y(x+y)\right)=810^{3} \\
& x^{12} y^{12}\left(x^{3}+y^{3}+3 x y \cdot \frac{810}{x^{4} y^{4}}\right)=810^{3} \\
& x^{12} y^{12}\left(\frac{945}{x^{3} y^{3}}+3 \cdot \frac{810}{x^{3} y^{3}}\right)=810^{3} \\
& x^{9} y^{9}(945+3 \cdot 810)=810^{3} \\
& x^{3} y^{3}=\frac{810}{15}=54
\end{aligned}
$$

So (from above) $2 x^{3}+(x y)^{3}+2 y^{3}=2\left(\frac{945}{x^{3} y^{3}}\right)+x^{3} y^{3}=\frac{1890}{54}+54=89$.

Round 8

From the picture, $\theta=B-A$, where B and A are the measures in degrees of the minute hand and hour hand with respect to the 12 o'clock position.
To find B, note that $1^{\prime}=\frac{360}{60}=6^{\circ}$, hence the minute hand creates (with 12 o'clock) angle $B=42^{\prime}=6 \cdot 42=252^{\circ}$.
To find A, note that 1 hour $=\frac{360}{12}=30^{\circ}$. The hour hand rotates 30° in one hour (60 minutes) and 0.5° in one minute. Since A corresponds to the time $4: 42$ or 4 hours and 42 minutes, $A=\left(4 \cdot 30^{\circ}\right)+\left(42 \cdot 0.5^{\circ}\right)=120^{\circ}+21^{\circ}=141^{\circ}$.

Thus, $\theta=B-A=252^{\circ}-141^{\circ}=111^{\circ}$.

Round 9

The sides increase by 20%, so each side increases by a factor of 1.2 . The height of the triangle will increase by the same factor. Thus the area would increase by a factor of $(1.2)^{2}=1.44$ which is an increase of 44%.

Round 10

The angle θ locates the center C of the smaller cylinder with respect to a fixed vertical reference. The point A, which is on the rolling cylinder, and point D, which is on the stationary cylinder, are coincident when $\theta=0$. The distance $D B=B A$ where these are arc lengths on the larger and smaller cylinders respectively.
So $R \theta=r(\phi-\theta)$. Simplifying gives $(R+r) \theta=r \phi$ and $\phi=\left(\frac{R}{r}+1\right) \theta$. When $R=3$ and $r=1$, we have $\phi=\left(\frac{3}{1}+1\right) \theta=4 \theta=4(1$ rotation $)=4$ rotations .

