UNG UNIVERSITY of $\quad \begin{aligned} & \text { UNGR } \\ & \text { NORTH GEORGIA }\end{aligned}$

University of North Georgia
Mathematics Tournament

April 7, 2018

Solutions for the Afternoon Team Competition

Round 1
From the figure below: $\tan \alpha=\frac{6}{x}=\frac{15-x}{6}$. Simplifying gives $36=15 x-x^{2}$ and then $x^{2}-15 x+36=0$. Solving gives $x=3$ or $x=12$. So $\tan \alpha=\frac{6}{x}=\frac{6}{12}=\frac{1}{2}$ or $\tan \alpha=\frac{6}{x}=\frac{6}{3}=2$.

Round 2
Use as many 12 lb . bags as possible, and let the gap be some number that will be filled up by a combination of 18 lb . and 22 lb . bags. 1000 divided by 12 gives $831 / 3$, so try 80 and get $80 * 12=960$ leaving a gap of 40 bags. So you need 8012 lb . bags, 118 lb . bag, and 122 lb . bag for a total of 82 bags.

Round 3

Since it is stipulated that $0^{\circ} \leq A \leq B \leq 180^{\circ}$, if you view the equations as resulting from two unit vectors, one at angle A from the positive x-axis and the other unit vector at angle $B, \cos A+\cos B=0$ implies that $\sin A=\sin B$. So from $\sin A+\sin B=0.5$ and $\sin A=\sin B$, we have $\sin A=0.25$. Solving gives $A=14.47751219^{\circ}$. Angle $B=180-A$, so the difference
$B-A=180-2 A=180-2(14.47751219)=151.0449756^{\circ}=151^{\circ}$.

Round 4

$P($ snow $)=P($ snow \cup rain $)-P($ rain $)+P($ snow \cap rain $)=0.8-0.4+0.1=0.5$ or 50% chance

Round 5

Let $x=$ the number of oranges at the beginning. We have the equation:
$\frac{\frac{x}{2}-\frac{1}{2}}{2}-\frac{1}{2}-\frac{1}{2}=24$. Multiplying both sides of the equation by 2 gives $\frac{\frac{x}{2}-\frac{1}{2}}{2}-\frac{1}{2}-1=48$ and then $\frac{\frac{x}{2}-\frac{1}{2}}{2}-\frac{3}{2}=48$. Multiplying both sides of the equation by 2 again gives $\frac{x}{2}-\frac{1}{2}-3=96$. Solving gives $x=199$.

Round 6

We have $f(x)= \begin{cases}-2 x+4035 & \text { for } \quad x<2017 \\ 1 & \text { for } 2017 \leq x \leq 2018 \\ 2 x-4035 & \text { for } \quad x>2018\end{cases}$
The first function is decreasing, the second function is constant, and the third is increasing. Thus the minimum of $f(x)$ is when $2017 \leq x \leq 2018$ and it is equal to 1 .

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 7

The integer coordinates that satisfy the equation are $(\pm 3, \pm 4),(\pm 4, \pm 3),(0, \pm 5)$, and $(\pm 5,0)$. To have the greatest possible ratio $\frac{A B}{C D}$, we want to maximize $A B$ and minimize $C D$. Since they are both irrational, they also have to be the square root of something. The greatest value of $A B$ happens when A and B are almost across from each other and are in opposite quadrants. So A could be $(-4,3)$, B could be $(3,-4)$, and then $A B=\sqrt{98}$. The least value of $C D$ happens when C and D are in the same quadrant and
very close to each other. So C could be $(3,4), D$ could be $(4,3)$, and then $C D=\sqrt{2}$. Thus, $\frac{A B}{C D}=\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{49}=7$.

Round 8

When the graph of the left side is intersected by the line $y=m$, we can get two, three, four, or no intersection points. Exactly three solutions are obtained when the line $y=m$ touches the vertex of the parabola $y=-\left(x^{2}+4 x-5\right)$. See the picture below. The vertex of the parabola $y=x^{2}+4 x-5$ is at the point $(-2,-9)$, so the vertex of the parabola $y=-\left(x^{2}+4 x-5\right)$ is at the point $(-2,9)$. So the line has the equation $y=9$, therefore $m=9$.

Round 9

Let a_{1} be the first term and r be the constant difference between two consecutive terms. Then $a_{n}=a_{1}+(n-1) r$. We have the system of equations $\left\{\begin{array}{l}-7=a_{1}+(3-1) r \\ 56=a_{1}+(12-1) r\end{array}\right.$. Solving this system gives $a_{1}=-21$ and $r=7$. Then we have $28=-21+(n-1) \cdot 7$, so $n=8$.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 10

Since the sum of the squares of the sides of a right triangle is 578, we have $a^{2}+b^{2}+c^{2}=578$.
Substituting $a^{2}+b^{2}$ for c^{2} gives $a^{2}+b^{2}+\left(a^{2}+b^{2}\right)=578$. Combining terms gives $2 a^{2}+2 b^{2}=578$ and $a^{2}+b^{2}=289 \quad$ (1).
Since the perimeter of the right triangle is 40 , we have $a+b+c=40$. Substituting for c gives $a+b+\sqrt{a^{2}+b^{2}}=40$
Using (1) above, $\sqrt{a^{2}+b^{2}}=17$. Substituting into (2) gives $a+b+17=40$ and then $a+b=23$.
Solving for b and substituting into (1) gives $a^{2}+(23-a)^{2}=289$. Simplifying this equation gives $a^{2}+529-46 a+a^{2}=289$ and then $2 a^{2}-46 a+240=0$. Solving this equation gives $a=8$ or $a=15$. Then $b=23-a=23-8=15$ or $b=23-a=23-15=8$. So the length of the smallest side of the right triangle is 8 .

